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ABSTRACT
Deep neural networks (DNNs) are inherently susceptible to adver-
sarial attacks even under black-box settings, in which the adversary
only has query access to the target model. In practice, while it may
be possible to effectively detect such attacks (e.g., observing mas-
sive similar but non-identical queries), it is often challenging to
exactly infer the adversary’s intent (e.g., the target class of the ad-
versarial example the adversary attempts to craft) especially during
early stages of the attacks, which is crucial for performing effective
deterrence and remediation of the threats in many scenarios.

In this paper, we present AdvMind, a new class of estimation
models that infer the adversary intent of black-box adversarial at-
tacks in a robust and prompt manner. Specifically, to achieve robust
detection, AdvMind accounts for the adversary adaptiveness such
that her attempt to conceal the target will significantly increase the
attack cost (e.g., the number of queries); to achieve prompt detec-
tion, AdvMind proactively synthesizes plausible query results to so-
licit subsequent queries from the adversary that maximally expose
her intent. Through extensive empirical evaluation on benchmark
datasets and state-of-the-art black-box attacks, we demonstrate
that on average AdvMind detects the adversary intent with over
75% accuracy after observing less than 3 query batches and mean-
while increases the cost of adaptive attacks by over 60%. We further
discuss the possible synergy between AdvMind and other defenses
against black-box adversarial attacks, pointing to several promising
research directions.
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1 INTRODUCTION
The recent advances in deep learning [16] have led to breakthroughs
in a range of long-standing machine learning tasks (e.g., image clas-
sification [9], natural language processing [26], and even playing
Go [30]), enabling many scenarios previously considered strictly
experimental. However, it is well known that deep neural network
(DNN) models are inherently vulnerable to adversarial inputs –
those maliciously crafted samples to force the target DNNs to misbe-
have [32] – which significantly hinder their use in security-sensitive
domains. Typically, adversarial inputs are crafted by carefully per-
turbing legitimate samples under the guidance of the gradient in-
formation of target DNNs (i.e., “white-box” attacks) [5, 11].

Meanwhile, many cloud-based service providers, including Ama-
zon, Google, Microsoft, BigML, and others all have arisen to provide
Machine Learning-as-a-service (MLaaS) platforms. On such plat-
forms, increasingly many commercial and proprietary DNN models
are being deployed with publicly accessible interfaces (“predictive
APIs”), which allow users to query the backend models with inputs
of interests and charge users on a pay-per-query basis. For instance,
the Clarifai NSFW1 (“not safe for work”) detection API returns
probability scores that a given image contains nudity. The first 2,500
queries are free, it then charges $2.4 per 1,000 queries.

Under such settings, the adversary must (i) construct adversarial
inputs with only query access to the target DNNs (i.e., without
gradient information) and (ii) also minimize the attack cost in terms
of the number of queries, which spurs the research on “black-box”
adversarial attacks. The existing black-box attacks in the literature
can be categorized in two classes. The first one trains a surrogate
DNN to emulate the target model and attacks the surrogate model
using first-order white-box methods [25]. However, it often requires
on the order of millions of queries to construct surrogate models for
DNNs used in practice [14]; the second one constructs adversarial
inputs by estimating the gradient of target DNNs via coordinate-
wise finite difference methods [6, 14, 24], as illustrated in Figure 1.
Due to its practical feasibility, in the following, we focus on the
second class of black-box adversarial attacks.

Given their reliance on zeroth order methods, such black-box
attacks often require issuing a number of queries in the vicinity of
a point of interest to accurately estimate its gradient information.

1https://www.clarifai.com/models
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Figure 1: Illustration of black-box adversarial attacks.

Thus, it may be straightforward to detect the undergoing black-
box attacks (e.g., by observing massive similar but non-identical
queries [7]). Yet, it is often challenging to accurately infer the adver-
sary’s intent – the target class of the adversarial input the adversary
attempts to craft – especially during early stages of the attack. Iden-
tifying the adversary’s target in many scenarios, such as the person
the adversary impersonates in face recognition [3], the insurance
category the adversary claims in healthcare fraud [28], and the legit-
imate source the adversary disguises as in fake news detection [17],
is critical for deploying proper mitigation strategies or performing
prompt remediation against such threats.

Yet, despite the plethora of work on black-box adversarial attacks,
the research on understanding the adversary’s intent is still fairly
limited. To our best knowledge, this work represents a solid step
towards bridging this gap. We present AdvMind, a novel framework
for early-stage detection of the adversary’s intent in black-box
adversarial attacks. At a high level, AdvMind achieves robust and
prompt inference of adversary intent with two key strategies:

Robust intent estimation – Taking into account that the adver-
sary may purposely issue fake queries to conceal her true intent,
AdvMind employs an mean estimation model that is (i) reliable even
in the presence of adversarial noise and (ii) agnostic to the under-
lying distribution from which the adversary samples the queries.
Furthermore, by leveraging the fact that camouflage requires sig-
nificantly increasing the attack cost (e.g., the number of queries
issued), AdvMind creates for the adversary the dilemma between
intent disclosure and attack cost.

Proactive intent solicitation – To achieve early-stage detection,
AdvMind proactively synthesizes plausible query results to solicit
subsequent queries from the adversary that maximally exposes her
intent. Moreover, generated by slight perturbation on first-order
information, the synthetic query results retain sufficient accuracy
for legitimate use but can cause significant deviation if the results
are used for gradient estimation as in black-box adversarial attacks,
which further deters the adversary from successful attacks.

We extensively evaluate the efficacy of AdvMind with respect to
benchmark datasets, popular DNNs, and state-of-the-art black-box
attacks. We show that across all cases, AdvMind manages to detect
the adversary intent with over 75% accuracy after observing less
than 3 query batches and meanwhile increases the query cost of
adaptive attacks by over 60%. We further discuss the synergy be-
tween AdvMind and existing defenses against black-box adversarial
attacks, pointing to several promising research directions.2

2The code and data used in the paper is released at https://github.com/alps-lab/
advmind.

2 FUNDAMENTALS
We begin with introducing a set of concepts and assumptions used
throughout the paper.

2.1 Threat Models
In the following, we primarily focus on predictive tasks (e.g., image
classification [9]). Under this setting, a DNN f represents a function
f : X → C, which assigns a given input x ∈ X to one of a
set of predefined classes C, f (x) = c ∈ C. DNNs are inherently
vulnerable to adversarial inputs, which are maliciously crafted to
force target DNNs to misbehave [8, 22, 23, 32]. Here we focus on
the setting of targeted attacks. Specifically, an adversarial input x∗
is often generated by slightly modifying a benign input x◦, with
the objective of forcing f to misclassify x∗ into a target class c∗,
f (x∗) = c∗ , f (x◦). To ensure that x∗ is perceptually similar to x◦,
the perturbation is constrained to a set of allowed perturbations
(e.g., a norm ball Bε (x◦) = {x |∥x − x◦∥∞ ≤ ε}).

Consider project gradient descent (PGD) [22], a universal first-
order adversarial attack, as an example. It is implemented as itera-
tive projected gradient descent on the negative loss function:

x (i+1) = ΠBε (x◦)
(
x (i) − α sgn

(
∇ℓ

(
f (x (i)), c∗

) ) )
(1)

where Π denotes the projection operator, α (α ≥ 0) represents the
learning rate, the loss function ℓ measures the difference of the
model prediction f (x) and the class c∗ desired by the adversary
(e.g., cross entropy), and x (0) is initialized as x◦.
Algorithm 1: Black-Box Attack
Input: original input x (0) = x◦, target class c∗, target DNN f ,

learning rate α , norm constraint ε , and number of iterations
niter

Output: adversarial input x∗
1 for i = 1, . . . , niter do
2 д̂(x (i )) ← GradEstimate(x (i ), c∗);
3 x (i+1) ← ΠBε (x◦)

(
x (i ) − α sgn

(
д̂(x (i ))

) )
;

4 if f (x (i+1)) = c∗ then return x (i+1) as x∗;

5 return Fail;

Under the black-box setting, the adversary has only query access
to the target DNN f (i.e., without the gradient information), as
sketched in Algorithm 1. Note that here we focus on an account-
oriented setting, where users must create an account before they
can query the model [7]. The adversary typically uses coordinate-
wise finite difference methods to estimate the gradient and then
applies gradient descent as in Eqn (1) to generate adversarial inputs
x∗. Different black-box adversarial attacks mainly differ in their
gradient estimation method GradEstimate(x, c∗) in Algorithm 1. In
this work, we consider three representative black-box attacks.

To clarify, f (x) returns the classification label c of image x in the
above content. However, we’ll introduce different attack methods
in the following section, within which f (x) is the probability confi-
dence vector after softmax layer. For simplicity, in the remainder
of the paper, f (x) stands for the classification label in ℓ(f (x), c∗),
and stands for the probability vector when it’s alone.

Zeroth Order Natural Evolutionary Strategy. In [14], Ilyas et
al. apply natural evolutionary strategies (NES), a derivative-free
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optimization method [35] to estimate the gradient of д̂(x (i)). Specif-
ically, NES generates nquery data points in the neighborhood of x (i)
by sampling from a normal distribution, retrieves their predictions
from the target DNN f , and estimates the gradient д̂(x (i)) as follow:

д̂(x (i)) =
1

σnquery

nquery∑
j=1

f
(
x (i) + σu(j)

)
u(j) (2)

where each sample u(j) is sampled from the standard normal distri-
bution N(0, I ), and σ is the sampling variance.

To accelerate the sampling, it is possible to generate only half of
the samples from the distribution and set the other half symmetri-
cally. The gradient estimate is then formulated as follows:

д̂(x (i)) =
1

σnquery

[nquery/2]∑
j=1

(
f
(
x (i) + σu(j)

)
− f

(
x (i) − σu(j)

) )
u(j) (3)

Zeroth Order signSGD. Liu et al. [19] integrate signSGD [2], a
compressed optimization method only using gradient sign, with
zeroth order optimization [6], and propose one- and two-sided esti-
mators of д̂(x (i)). The one-sided estimator is given by:

д̂(x (i)) =
1

σnquery

nquery∑
j=1

(
f
(
x (i) + σu(j)

)
− f

(
x (i)

) )
u(j)

=
1

σnquery

nquery∑
j=1

f
(
x (i) + σu(j)

)
u(j) −

f
(
x (i)

)
σnquery

nquery∑
j=1

u(j)

(4)

where the NES estimator in Eqn (2) can be used to compute the first
term above. Since the expectation of each sample u(j) is 0, Eqn (4)
and Eqn (2) share the same expectation. Yet, compared with the
NES estimator, the second term in Eqn (4) reduces the error caused
by the variance of u(j), leading to faster convergence.

The two-sided estimator in [19] is essentially identical to the
improved NES estimator in Eqn (3).

Zeroth Order Hessian-Aware. Note that the NES and signSGD
estimators only use first-order information in estimating д̂(x (i)).
In [36], Haishan et al. argue that it is more efficient to estimate
д̂(x (i)) if the second-order information (Hessian) is considered. They
propose the following gradient estimator:

д̂(x (i)) =
1

σnquery

nquery∑
j=1

(
f
(
x (i) + σH̃−

1
2u(j)

)
− f

(
x (i)

) )
H̃−

1
2u(j) (5)

where H̃−
1
2 is the Cholesky inverse of the Hessian estimate H̃ .

Further, H̃ is estimated as follows:

H̃ =

∑nquery
j=1

��f (
x (i) + σu(j)

)
+ f

(
x (i) − σu(j)

)
− 2f

(
x (i)

) ��u(j) ⊗ u(j)
2σ 2nquery

(6)

where ⊗ represents the outer product of two vectors. Note that to
ensure the feasibility of Cholesky decomposition and invertibility,
a small identity matrix (e.g., τ I ) is often added to H̃ .

2.2 Overview of AdvMind
Despite their apparent variations, the query-based black-box ad-
versarial attacks share common patterns. Each attack consists of a
sequence of iterations. At the i-th iteration, the adversary issues
queries regarding the current input x (i), which we refer to as the
query of interest (QOI), and the auxiliary data points in the vicinity
of x (i), which are used to estimate д̂(x (i)).

Therefore, to infer the adversary’s intent (i.e., the target class c∗),
AdvMind adopts the following strategies: (i) grouping the incoming
queries into a sequence of query batches, each corresponding to an
iteration (the feasibility of grouping queries into different iterations
is detailed in technical report [27]; (ii) estimating the QOI at each
iteration – As the auxiliary queries appear in the close vicinity of
x (i), it is feasible to accurately estimate x̂ (i) by clustering the queries;
and (iii) estimating the gradient direction followed by the adversary
– By linking consecutive QOIs (e.g., x̂ (i) and x̂ (i+1)), it is feasible to
infer the gradient direction the adversary is following to craft the
adversarial input. Intuitively, as the adversary attempts to minimize
the loss function with respect to the target class c∗, the gradient
tends to point to that direction. Further, by combining the inference
at multiple iterations, it is possible to reliably infer the adversary’s
intent c∗. This scheme is illustrated in Figure 2.

QOI 

Estimation x̂(i)

x̂(i+1)

Queries

QOI 

Estimation

Intent

Inference
ĉ∗

…
…

i-th

(i+ 1)-th

iteration
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Figure 2: Illustration of AdvMind framework.

Yet, this naïve inference model suffers the following drawbacks.
First, at each iteration, the adversary may attempt to inject fake
queries (i.e., irrelevant to the QOI) to conceal her intent. As out-
liers, the fake queries may significantly deviate AdvMind’s estimate
x̂ (i) from the ground-truth QOI x (i). To account for the possible
adversarial noise, AdvMind adopts a robust QOI estimator. With rea-
sonable fake query proportion pfake (e.g., pfake ≤ 40%), the robust
estimator is able to estimate the QOI with bounded bias. Further, it
creates for the adversary the dilemma between intent disclosure
and attack cost (e.g., in terms of the number of queries).

Second, as the adversary performs projected descent based on
the estimated gradient (Algorithm 1), the descent direction she fol-
lows may deviate from the true gradient direction, which in turn
causes errors in AdvMind’s inference of the adversary’s target class
c∗. To enable the early-stage inference and minimize the inference
uncertainty, AdvMind adopts proactive intent solicitation. Specif-
ically, by slightly perturbing the query answers, AdvMind solicits
subsequent queries from the adversary that maximally expose the
target class. Note that such perturbation retains sufficient accu-
racy in the query answers for legitimate use but causes significant
deviation for gradient estimation.

We elaborate on the strategies of robust intent estimation and
proactive intent solicitation in § 3 and § 4 respectively.



3 QOI ESTIMATION
Here we focus on the QOI estimation at each iteration. We first
introduce a naïve estimator, which is however vulnerable to adver-
sarial noise (i.e., fake queries), and then present a robust estimator,
which bounds the estimation bias under reasonable noise ratio.

3.1 Naïve Estimator
Recall that at i-th iteration, the adversary samples a set of auxiliary
queries X(i) in the vicinity of the QOI x (i) following a certain dis-
tribution (e.g., Gaussian). We may estimate x̂ (i) using the mean or
median of the received queries X(i).3 Note that compared with the
mean estimate, the median estimate is more robust to outliers but
has a larger bias as it does not utilize the data points on edges.

Figure 3: Naïve versus robust estimation of QOI in the presence of
adversarial noise.

However, to conceal her intent, the adversary may adaptively
inject fake queries into X to deviate x̂ from the true QOI x . As
illustrated in Figure 3, the presence of such adversarial noise sig-
nificantly affects the naïve estimator, even for the median estimate.
The adversary may select from a variety of models to generate fake
queries, including random sampling, duplicating existing queries,
and query blinding [7], which lead to AdvMind’s varying estimation
error (e.g., measured by ∥x̂ − x ∥).

To be concise, in the following we consider Huber’s contam-
ination model [13], which subsumes a number of models above.
Specifically, it assumes that the set of queries x1, . . . , xnquery are ran-
domly sampled from a mixture distribution, with the cumulative
distribution defined by:

F = (1 − pfake)Φ + pfakeH (7)

where pfake is the fraction of fake queries (0 ≤ pfake < 0.5) among
all the queries, H is the (unknown) cumulative distribution of
fake queries, and Φ is the cumulative distribution of true auxil-
iary queries (e.g., Gaussian or uniform).

Next we develop a robust QOI estimator against the influence
of fake queries and bounds the estimation bias even under the
worst-case distribution H .

3.2 Robust Estimator
We extend the robust mean estimator [13, 29] to the context of QOI
estimation. Specifically, given the set of queries X (|X| = nquery),
we estimate the QOI in an iterative manner, in which the k-th round
estimator x̃ (k) is updated as follows:

x̃ (k ) = x̃ (k−1) +
MAD(X)
EΦ[ψ ′]

·

∑nquery
i=1 ψ

(
xi−x̃ (k−1)

MAD(X)

)
nquery

(8)

3When the context is clear, we omit the superscript (i) in the notations.

where the functionψ is defined asψ (x) = (ex −1)/(ex +1), MAD(X)
is the median average deviation of the query set X. Concretely,
with Φ instantiated as the standard Gaussian distribution, we may
estimate the expectation EΦ[ψ ′] as follows:

EΦ[ψ
′] =

∫ +∞
−∞

ψ ′(s) dΦ(s) ≈ 0.4132 (9)

The value of x̃ (0) is initialized as the median of the query set X.
As observed in our empirical evaluation (which is also consistent
with the results of [29]), one-iteration estimation x̃ (1) is typically
accurate enough to approximate the QOI x . Thus we set the number
of iterations k = 1 by default.

Further, we may also estimate the bias of x̃ under the worst-case
distribution of adversarial noise, which is needed for inferring the
adversary’s target in § 4. Specifically, the bias of the k-th iteration
estimator, B(x̃ (k )), is updated as:

B(x̃ (k )) =B(x̃ (k−1))

+
(1 − pfake)EΦ[ψ (X − B(x̃

(k−1)))] + pfakeψ (∞)

EΦ[ψ ′]

(10)

with the initial value given by B(x̃ (0)) = Φ−1
(

1
2(1−pfake)

)
, where Φ−1

is the inverse function of the Gaussian distribution.

4 INTENT INFERENCE
In this section, we introduce AdvMind’s intent inference model,
which based on the QOIs estimated at consecutive iterations, identi-
fies the adversary’s target class. Moreover, to infer the adversary’s
intent at an early attack stage and to minimize the inference un-
certainty, AdvMind employs a proactive solicitation strategy, which
solicits subsequent queries from the adversary that maximally ex-
pose her target class.

4.1 Passive Inference
We begin with the passive inference model, which identifies the
target class c∗ directly from the QOI estimation.

Specifically, assuming x̃ (i) and x̃ (i+1) as the estimated QOIs at two
consecutive iterations, we computes the descent direction vector
d (i) = x̃ (i+1) − x̃ (i) and the gradient vector дc (x̃ (i)) at x̃ (i) with respect
to each class c ∈ C, and regards the cosine similarity of d (i) and
дc (x̃

(i)) as the score of c:

score(c) =
d (i) · дc (x̃

(i))

∥d (i)∥∥дc (x (i))∥
(11)

We further normalize the scores of C and transforms them into
a probability vector using the softmax function. Let p(i) denote the
probability vector estimated at the i-th iteration. We then infer the
most likely target class ĉ∗ as the class c leading to the overall largest
probability:

ĉ∗ = arg max
c ∈C

Πip
(i)
c (12)

Algorithm 2 sketches the procedure of adversary intent inference
for niter iterations.



Algorithm 2: Passive Intent Inference
Input: number of iterations niter, QOI estimates (x̃ (1), . . . , x̃ (niter)),

confidence threshold κ
Output: target class estimate ĉ∗
// initialization

1 p ← 1;
2 for i = 2, . . . , niter do
3 d ← x̃ (i+1) − x̃ (i );
4 for c ∈ C do

// descent direction estimation

5 дc = ∇ℓ(f
(
x̃ (i )

)
, c);

6 sc ←
d ·дc
∥d ∥∥дc ∥

;

// normalization

7 p ← (p ⊙ softmax(s));
8 if maxc pc ≥ κ then return arg maxc pc as ĉ∗ ;

9 return arg maxc pc as ĉ∗;

4.2 Proactive Solicitation
As illustrated in Figure 4, because the adversary relies on the esti-
mated gradient (Algorithm 1), the descent direction д̂(x) may devi-
ate from the true gradient direction д(x), causing possible errors
in AdvMind’s estimation of c∗. The estimate error of д̂(x) mainly
results from the bias between д̂(x) and д(x). Takeing signSGD in
Eqn (4) as a concrete example, the expectation of д̂(x) is given by:

E[д̂(x)] =
1
σ
Eu [(f (x + σu) − f (x))u]

= Eu [(д(x) · u)u] + Eu [R(x,u)u]
(13)

Where u ∼ N(0, I ) and R(x,u) is the second order remainder of
f (x) in its Taylor expansion. We have the following proposition
(proof in technical report [27]).

Proposition 4.1. For any vector v , we have Eu [(v · u)u] = v ,
where u ∼ N(0, I ).

Applying this proposition to Eqn (13), the first term becomesд(x),
which is the true gradient. Yet, due to the high-order term R(x,u),
Eqn (13) is a biased estimate of д(x). Meanwhile, if we remove the
high-order information in the query answers, the adversary would
be able to estimate the gradient more accurately, and AdvMind
would also obtain a more accurate estimation of the adversary’s
intent. To this end, we define the prediction for a query xi as:

f̂ (xi ) = f (x̃) +G · (xi − x̃) (14)

where x̃ is the estimated QOI, f̂ (xi ) is the modified prediction on
xi , G is a gradient matrix (G ∈ R |C |×n ), in which the c-th row is the
gradient vector of the class c .

We have the following proposition that ensures the similarity of
f̂ (xi ) and its true value f (xi ) (proof in technical report [27]):

Proposition 4.2. If the model f is Lipschitz continuous with
∥ f (x) − f (y)∥ ≤ K ∥x − y∥, we have

∥ f̂ (xi ) − f (xi )∥ ≤ (K + ∥G∥) (σ ∥u∥ + B(x̃)) (15)

where u ∼ N(0, I ) and B(x̃) is the bias of the QOI estimate in § 3.

Applying Eqn (14), the adversary’s gradient descent direction
now shares the same expectation with the true gradient direction

Passive Inference Proactive Solicitation

Target Class

Other Class

Other Class

Target Class

�target
�other

�target

�other

Figure 4: Passive inference versus proactive solicitation

with respect to the target class c∗. Yet, due to the estimation variance,
the gradient of other classes may be event might be even closer to
the adversary’s estimate, as shown in Figure 4. To address this issue,
we force the gradient directions of different classes to be orthogonal
to each other so that if the adversary follows a descent direction,
the target class can be easily distinguished from other classes, as
illustrated in Figure 4.

To this end, the new gradient matrix is defined as follows:

G = (1 − µ)д(x̃) + µM (16)

where the parameter µ ∈ [0, 1] (dispersion coefficient) controls the
magnitude of direction dispersion, andM is an orthogonal matrix
set by AdvMind (an example given below). Specifically,M separates
gradients of different classes since each row of G is the gradient of
the corresponding class.

M =


1 0 · · · 0 1 0 · · · 0 · · ·

0 1 · · · 0 0 1 · · · 0 · · ·

...
...
. . .

...
...
...
. . .

...

0 0 · · · 1 0 0 · · · 1 · · ·


(17)

Note that Eqn (17) is only one possible instantiation ofM . Let c
be the number of classes and d be the data dimensionality. There
are essentially (c!)(d/c) different permutation matrices from which
the defender is able to arbitrarily select, creating a prohibitively
large number of possibilities for the attacker to explore in order to
recover the genuine gradient information.

In conclusion, the proactive solicitation modifies the first-order
information (i.e., gradient) while preserving the zeroth-order in-
formation. By properly controlling the proportion of gradient in-
formation released to the adversary, AdvMind is able to expose the
adversary’s intent at an early stage while also deterring her from
achieving successful attacks.

5 EMPIRICAL EVALUATION
Next we empirically evaluate the performance of AdvMind with
respect to benchmark datasets, popular DNNs, and state-of-the-
art black-box adversarial attacks. The experiments are designed to
answer the following questions:
• RQ1: Is AdvMind effective to detect the attacker’s intent during
an early stage of the attack?
• RQ2: Is AdvMind effective against the attacker who purposely
attempts to conceal her intent?
• RQ3: Is AdvMind effective against various black-box attacks?



5.1 Experimental Setting
Datasets. We primarily use four image classification datasets.
• CIFAR10 [15] – it includes 60K 32×32 colored images from 10
classes (e.g., “ship”);
• CIFAR100 [15] – it is essentially CIFAR10 but categorized into 100
fine-grained classes;
• ISIC [10] – it represents the skin cancer screening task from the
ISIC 2018 challenge, in which given 600 × 450 skin lesion images
are categorized into a 7-disease taxonomy (e.g., melanoma);
• Mini-VGGface2 – it is a subset of the VGGface2 dataset [4], which
consists of 224 × 224 (center-cropped) color images drawn from
50 individuals (e.g., ‘Aaron Stanford’);.

DNNs. We consider 4 DNNs as the backend models, VGG13 [31]
for CIFAR10, VGG16 for CIFAR100, ResNet101 [12] for ISIC, and
ResNet18 for VGGface2, which respectively attain 92.440%, 70.470%,
88.176%, and 96.175% accuracy on corresponding testing sets.

Attack and Inference Models. We consider 3 state-of-the-art black-
box adversarial attacks, NES [14], signSGD [2], and HessAware [36],
and their adaptive variants (indicated by the superscript of “A”).
More details of the attacks can be found in § 2. We build 3 variants
of AdvMind: basic (AdvMind) – which passively observes the at-
tacker’s queries; robust (AdvMindR) – which employs robust intent
estimation; and robust + proactive (AdvMindRP)– which adopts both
robust intent estimation and proactive intent solicitation.

All the algorithms are implemented in PyTorch. The default pa-
rameter setting is summarized in Table 1. Note that the HessAware
attack is only conducted on the CIFAR datasets due to the infeasible
cost of computing Hessian matrices for 224×224 images.
Parameter Definition Dataset

CIFAR10 CIFAR100 ISIC VGGface2
α adversary’s learning rate 0.01
ε norm constraint of perturbation 0.03

niter number of attack iterations 10
nquery queries per iteration 100
pfake proportion of fake queries 0.5
σ sampling variance 0.001
τ HessAware parameter 1
k QOI estimation iterations 1
µ dispersion coefficient 0.1 0.1 0.3 0.3
κ inference confidence 0.6

Table 1. Default setting of key parameters.

5.2 A CTF Game
To evaluate the performance of AdvMind (the defender) against
different black-box attacks and their variants (the attacker). We
define the following capture-the-flag (CTF) game.

Setting. Given the backend DNN f , the attacker randomly selects
one input x◦ from the testing set and a target class c∗ , f (x◦), and
aims to generate an adversarial input x∗ that satisfies (i) x∗ ∈ Bε (x◦)
and (ii) f (x∗) = c∗. At the k-th iteration of the attack, the attacker
estimates the gradient with respect to the current input x (k−1) and
then perturbs x (k−1) to generate x (k ); meanwhile, the AdvMind at-
tempts to infer the attacker’s target class c∗ based on the previous
queries. We define that the attacker wins the game if she success-
fully generates the adversarial input x∗ before AdvMind is able to
correctly infer c∗ with high confidence, and AdvMindwins the game

if she correctly infers c∗ before the attacker generates x∗. Note that
if none of them succeeds, it is a “draw”.

Observations. We measure up to each iteration the percentage of
games won by the attacker or the defender, under different config-
urations for the attacker and the defender. The results on different
datasets and DNNs are illustrated in Figure 5 and Figure 6, from
which we have the following key observations. Note that we aim
at early detection so we only focus on the first 10 iterations, during
which most attacks haven’t succeeded, especially for VGGface2.

O1: Basic AdvMind is able to infer the attacker’s intent in non-
adaptive attacks to a large extent. AdvMind defeats the attacker
in around 50% of the games up to the 10-th iteration on CIFAR10
and CIFAR100, and in around 90% of the games on ISIC and VG-
Gface2. Its better performance on higher-dimensional datasets may
be attributed to the larger divergence of gradient directions among
different classes in higher-dimensional spaces. Yet, the success rate
of AdvMind increases gradually with the number of iterations, indi-
cating that the passive inference requires a large number of obser-
vations to make reliable estimation. Furthermore, basic AdvMind is
highly sensitive to the fake queries injected by the attacker. Under
the adaptive attacks, AdvMind fails to correctly infer the attacker’s
target before the attacker successfully generates the adversarial
examples. The detection rate drops around 10% on CIFAR10 and
CIFAR100 and about 30% on ISIC and VGGface2. This may be ex-
plained by that basic AdvMind relies on naïve mean estimation,
which tends to significantly deviate from the real value, under the
influence of the injected noise. This deviation is especially evident
for higher-dimensional data (e.g., ISIC and VGGface2).

O2: The robust intent estimation of AdvMindR effectively miti-
gates the influence of fake queries by focusing on the subset of
coherent queries to estimate the query of interest. Meanwhile, at
each iteration, the attacks attain lower success rates than the case
of non-adaptive attacks against basic AdvMind, which is explained
by the smaller number of queries useful for gradient estimation.

O3: The proactive intent solicitation of AdvMindRP further sig-
nificantly improves the inference accuracy, especially during the
early stages of the attacks. Across most cases, by the 3rd itera-
tion, AdvMindRP is capable of identifying the attacker’s true target
with approximately 75% accuracy even against the adaptive attacks.
Meanwhile, because of the dominant performance of AdvMindRP,
the attacker’s winning percentage is kept close to 0 during the first
10 iterations under all the settings.

O4: Overall, AdvMind’s performance seems agnostic to different
datasets, DNNs, or attacks. In comparison, the attacker’s effective-
ness varies significantly with concrete settings. For instance, at
the 10-th iteration, the winning percentages of most adaptive at-
tacks on ISIC2018 decrease by around 12.5% compared with their
counterparts on CIFAR10. This variations may be explained by that
the adaptive attacks require more iterations to craft adversarial
examples under black-box setting in high-dimensional space.

5.3 Impact of Key Factors
Next we evaluate the impact of different factors on AdvMind’s per-
formance, which shed light on the optimal operation of AdvMind. By
default, we use the robust+proactive variant of AdvMind (AdvMindRP)
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Figure 5: Winning percentages of the attacker and AdvMind in the CTF competition on first order methods with respect to different datasets
and DNN models.

.

Figure 6: Winning percentages of the attacker and AdvMind in the
CTF competition on the second order method with respect to differ-
ent datasets and DNN models.

in our evaluation. Unless noted otherwise, all the parameters are
set with their default values in Table 1. To evaluate the inference
of AdvMind and the attack effectiveness, we evaluate the inference
success rate and the attack success rate up to the 10-th iteration.
Note that to factor out the mutual influence, here we evaluate the
attacker’s and AdvMind’s success rates independently.

Number of Queries per Iteration nquery. We first measure the
impact of the number of queries issued by the attacker per iteration
(nquery). Figure 7 illustrates the attacker’s and AdvMind’s success
rates on different datasets and DNNs as nquery varies from 20 to
200. Note that we keep the proportion of fake queries pfake constant
(pfake = 0.5) in all the experiments here.

As expected, across all the settings, a large number of queries
allow the attacker to generate adversarial inputs more effectively.
For instance, on CIFAR10, as nquery grows from 20 to 200, the attack
success rate increases from about 0.1 to 0.4. At the same time, with
more queries, AdvMind is also enabled to estimate the attacker’s
query of interest more accurately, leading to higher inference accu-
racy. For instance, on CIFAR10, the inference accuracy increases
from around 0.7 to 1.0. Therefore, the attacker faces the dilemma
between attack effectiveness and intent exposure.

Proportion of Fake Queries pfake. With nquery = 100 fixed, we
evaluate the impact of the proportion of fake queries pfake on the
attacker’s and AdvMind’s performance (Figure 8).

It is observed that for both attacker and AdvMind, there exists
a critical threshold of pfake: once pfake exceeds this threshold, the
attack/inference success rate sharply decreases. For instance, on CI-
FAR10, if pfake ≥ 0.6, the success rate of AdvMind drops to around
0.1; once pfake ≥ 0.6, the attack success rate drops to around 0. In-
terestingly, the accuracy drop is larger for AdvMind than that for the
attacker. This may be intuitively explained as follow: pfake mainly
affects the attacker’s estimation about the gradient information and
AdvMind’s estimation about the query of interest; yet, as AdvMind
needs first to differentiate fake and true queries (which is set by the
attacker), pfake tends to have a larger impact on AdvMind. Thus, to
hide her intent, the adversary may set pfake sufficiently large (e.g.,
pfake ≥ 0.6), which however significantly increases the attack cost
(number of queries) and reduces the attack success rate.

Dispersion Coefficient µ. For AdvMind, the parameter µ controls
the weight of the dispersion matrixM in Eqn (16). A large µ implies
that the gradient directions with respect to different classes tend
to be approximately orthogonal to each other, therefore highly
indicative of the adversary’s target.

Figure 9 shows the attack and inference success rates as functions
of the dispersion coefficient. It is noted that across all the settings,
AdvMind’s effectiveness increases with µ, while the attack’s success
rate drops accordingly. This is due to that (i) the orthogonality of
the gradient directions increases with µ, making it easy for AdvMind
to identify the adversary’s gradient descent direction, and (ii) mean-
while the gradient estimation error of the adversary grows with µ,
making it difficult to find adversarial inputs.

However, it is worth pointing out that as µ increases, the es-
timated gradient using the query results becomes less and less
informative for the adversary to craft adversarial inputs. Therefore,
the adversary may abandon the estimate as µ reaches a critical
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Figure 7: Attack/inference success rate as a function of the number of queries per iteration nquery.
ISIC2018 VGGface2

Figure 8: Attack/inference success rate as a function of the proportion of fake queries pfake.
ISIC2018 VGGface2

Figure 9: Attack/inference success rate as a function of the dispersion coefficient µ .

threshold. To incentivize the adversary to estimate the gradient,
the defender should keep µ small (e.g., µ = 0.1) in AdvMind.

6 RELATEDWORK
Due to their use in security-critical domains, deep neural network
(DNN) models are increasingly becoming the targets of malicious
attacks. Most existing work focuses on the white-box setting, in
which the adversary has full access to the model information (e.g.,
its architecture and parameters). One line of work develops new
evasion attacks against DNN models [11, 22]. Another line of work
attempts to improve DNN resilience against such attacks by invent-
ing new training and inference strategies [21]. Yet, such defenses
are often circumvented by even powerful attacks [5] or adaptively
engineered adversarial inputs [1], resulting in a constant arms race
between adversaries and defenders [18].

The popularity of publicly accessible predictive APIs [34] has
spurred research on black-box adversarial attacks in which the
adversary has limited or no knowledge about the target DNN. Early
attack methods leverage the property of transferability [32]: certain
adversarial inputs crafted against one DNN model are effective
against another model; thus the adversary can attack a surrogate
model and apply them on the target model [20]. To defend against

such attacks, the method of ensemble adversarial training [33] has
been proposed recently, which trains a DNN model using data
augmented with adversarial inputs crafted on other models.

Recent work notes that adversarial inputs for surrogate do not
always transfer to the target model, especially when conducting
targeted attacks [6, 24]. This line of attacks instead constructs ad-
versarial inputs by estimating the gradient through the target DNNs
with coordinate-wise finite difference methods [14, 19, 36]. The re-
search on defending against query-based black-box attacks is still
limited. The recent work [7] proposes a stateful method to detect
query-based black-box attacks by measuring the relationships (e.g.,
similar but non-identical) of a sequence of queries.

This work complements the existing work by focusing on iden-
tifying the adversary’s intent during an early stage of the attack,
with new findings to mitigate black-box adversarial attacks.

7 DISCUSSION AND CONCLUSION
In this paper, we present AdvMind, a new class of models for infer-
ring adversary intent in black-box adversarial attacks. Combining
robust intent estimation and proactive intent solicitation, AdvMind
is able to reliably identify the adversary’s query of interest and ac-
curately detect the adversary’s target class in an early stage of the



attack, which facilitates to deploy proper mitigation strategies and
to perform prompt remediation against such threats. The empirical
evaluation with respect to benchmark datasets, popular DNNs, and
state-of-the-art attacks validates the efficacy of AdvMind.

This work also opens several avenues for further research. First,
we assume that a single adversary launches the attack and thus
can be easily detected [7]. In practice, the attack can be performed
by multiple colluding adversaries. It is critical to extend AdvMind
to such complicated settings. Second, we focus on query-based
attacks. There are other types of black-box attacks (e.g., surrogate
model [20]). As they do not require query access during drafting
adversarial inputs, AdvMind is unable to infer the adversary’s target
in such attacks. Finally, after identifying the adversary’s intent, the
next step is to perform effective mitigation. It is beneficial to inte-
grate AdvMind with model enhancement methods (e.g., adversarial
training [22]) to provide end-to-end protection.
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